Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invertebr Pathol ; 203: 108065, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246322

RESUMO

Greenshell™ mussels (Perna canaliculus) are endemic to New Zealand and support the largest aquaculture industry in the country. Photobacterium swingsii was isolated and identified from moribund P. canaliculus mussels following a mass mortality event. In this study, a challenge experiment was used to characterise, detect, and quantify P. swingsii in adult P. canaliculus following pathogen exposure via injection into the adductor muscle. A positive control (heat-killed P. swingsii injection) was included to account for the effects of injection and inactive bacterial exposure. Survival of control and infected mussels remained 100% during 72-hour monitoring period. Haemolymph was sampled for bacterial colony counts and haemocyte flow cytometry analyses; histology sections were obtained and processed for histopathological assessments; and adductor muscle, gill, digestive gland were sampled for quantitative polymerase chain reaction (PCR) analyses, all conducted at 12, 24, 48 h post-challenge (hpc). The most profound effects of bacterial injection on mussels were seen at 48 hpc, where mussel mortality, haemocyte counts and haemolymph bacterial colony forming were the highest. The quantification of P. swingsii via qPCR showed highest levels of bacterial DNA at 12 hpc in the adductor muscle, gill, and digestive gland. Histopathological observations suggested a non-specific inflammatory response in all mussels associated with a general stress response. This study highlights the physiological effects of P. swingsii infection in P. canaliculus mussels and provides histopathological insight into the tissue injury caused by the action of injection into the adductor muscle. The multi-technique methods used in this study can be applied for use in early surveillance programs of bacterial infection on mussel farms.


Assuntos
Perna (Organismo) , Animais , Nova Zelândia , Photobacterium , Progressão da Doença
2.
Microbiol Resour Announc ; 13(2): e0103923, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38132847

RESUMO

Here, we report draft genomic sequences from three Paenibacillus larvae isolates, the causative agent of American Foulbrood (AFB), obtained from honeybee colonies of Apis mellifera in Fiji, which allow both enterobacterial repetitive intergenic consensus and multilocus sequence typing genotypes to be elucidated for Fijian AFB.

3.
Microbiol Resour Announc ; 12(12): e0088423, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991357

RESUMO

Here, we present complete genome assemblies of Pasteurella multocida strains isolated from porcine, bovine, and cervine farms as part of bacteriology incursion investigations to identify pathogens that might present a sanitary risk to New Zealand.

4.
Microb Genom ; 9(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37486739

RESUMO

Chlamydia psittaci is a globally distributed veterinary pathogen with zoonotic potential. Although C. psittaci infections have been reported in various hosts, isolation and culture of Chlamydia is challenging, hampering efforts to produce contemporary global C. psittaci genomes. This is particularly evident in the lack of avian C. psittaci genomes from Australia and New Zealand. In this study, we used culture-independent probe-based whole-genome sequencing to expand the global C. psittaci genome catalogue. Here, we provide new C. psittaci genomes from two pigeons, six psittacines, and novel hosts such as the Australian bustard (Ardeotis australis) and sooty shearwater (Ardenna grisea) from Australia and New Zealand. We also evaluated C. psittaci genetic diversity using multilocus sequence typing (MLST) and major outer membrane protein (ompA) genotyping on additional C. psittaci-positive samples from various captive avian hosts and field isolates from Australasia. We showed that the first C. psittaci genomes sequenced from New Zealand parrots and pigeons belong to the clonal sequence type (ST)24 and diverse 'pigeon-type' ST27 clade, respectively. Australian parrot-derived strains also clustered in the ST24 group, whereas the novel ST332 strain from the Australian bustard clustered in a genetically diverse clade of strains from a fulmar, parrot, and livestock. MLST and ompA genotyping revealed ST24/ompA genotype A in wild and captive parrots and a sooty shearwater, whilst 'pigeon-types' (ST27/35 and ompA genotypes B/E) were found in pigeons and other atypical hosts, such as captive parrots, a little blue penguin/Korora (Eudyptula minor) and a zebra finch (Taeniopygia guttata castanotis) from Australia and New Zealand. This study provides new insights into the global phylogenomic diversity of C. psittaci and further demonstrates the multi-host generalist capacity of this pathogen.


Assuntos
Chlamydophila psittaci , Psitacose , Animais , Chlamydophila psittaci/genética , Tipagem de Sequências Multilocus , Plumas , Austrália , Psitacose/veterinária , Columbidae , Genômica
5.
Front Microbiol ; 14: 1161926, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152741

RESUMO

New Zealand is a remote country in the South Pacific Ocean. The isolation and relatively late arrival of humans into New Zealand has meant there is a recorded history of the introduction of domestic species. Honey bees (Apis mellifera) were introduced to New Zealand in 1839, and the disease American foulbrood was subsequently found in the 1870s. Paenibacillus larvae, the causative agent of American foulbrood, has been genome sequenced in other countries. We sequenced the genomes of P. larvae obtained from 164 New Zealand apiaries where American foulbrood was identified in symptomatic hives during visual inspection. Multi-locus sequencing typing (MLST) revealed the dominant sequence type to be ST18, with this clonal cluster accounting for 90.2% of isolates. Only two other sequence types (with variants) were identified, ST5 and ST23. ST23 was only observed in the Otago area, whereas ST5 was limited to two geographically non-contiguous areas. The sequence types are all from the enterobacterial repetitive intergenic consensus I (ERIC I) genogroup. The ST18 and ST5 from New Zealand and international P. larvae all clustered by sequence type. Based on core genome MLST and SNP analysis, localized regional clusters were observed within New Zealand, but some closely related genomes were also geographically dispersed, presumably due to hive movements by beekeepers.

6.
Vet Microbiol ; 283: 109774, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37216721

RESUMO

Chlamydia pecorum is a veterinary pathogen associated with abortions and perinatal mortality in sheep. Recent studies investigating foetal and perinatal lamb mortality in sheep from Australia and New Zealand identified C. pecorum clonal sequence type (ST)23 strains in aborted and stillborn lambs. Presently, there is limited genotypic information on C. pecorum strains associated with reproductive disease, although whole genome sequencing (WGS) of one abortigenic ST23 C. pecorum strain identified unique features, including a deletion in the CDS1 locus of the chlamydial plasmid. We applied WGS on two ST23 strains detected in aborted and stillborn lambs from Australia and used phylogenetic and comparative analyses to compare these to the other available C. pecorum genomes. To re-evaluate the genetic diversity of contemporary strains, we applied C. pecorum genotyping, and chlamydial plasmid sequencing to a range of C. pecorum positive samples and isolates from ewes, aborted foetuses and stillborn lambs, cattle and a goat from diverse geographical regions across Australia and New Zealand.The two new C. pecorum genomes are nearly identical to the genome of the Australian abortigenic strain including the unique deletion in the chlamydial plasmid. Genotyping revealed that these novel C. pecorum ST23 strains are widespread and associated with sheep abortions on Australian and New Zealand farms. In addition, a goat C. pecorum strain (denoted ST 304) from New Zealand was also characterised. This study expands the C. pecorum genome catalogue and describes a comprehensive molecular characterisation of the novel livestock ST23 strains associated with foetal and lamb mortality.


Assuntos
Doenças dos Bovinos , Infecções por Chlamydia , Chlamydia , Doenças das Cabras , Doenças dos Ovinos , Animais , Bovinos , Feminino , Gravidez , Austrália/epidemiologia , Doenças dos Bovinos/epidemiologia , Infecções por Chlamydia/epidemiologia , Infecções por Chlamydia/veterinária , Cabras , Gado , Nova Zelândia/epidemiologia , Filogenia , Ovinos , Doenças dos Ovinos/epidemiologia
7.
FEMS Microbiol Ecol ; 98(12)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36449667

RESUMO

The occurrence of pathogenic bacteria has emerged as a plausible key component of summer mortalities in mussels. In the current research, four bacterial isolates retrieved from moribund Greenshell࣪ mussels, Perna canaliculus, from a previous summer mortality event, were tentatively identified as Vibrio and Photobacterium species using morpho-biochemical characterization and MALDI-TOF MS and confirmed as V. celticus, P. swingsii, P. rosenbergii, and P. proteolyticum using whole genome sequencing. These isolates were utilized in a laboratory challenge where mussels were injected with cell concentrations ranging from 105 to 109 CFU/mussel. Of the investigated isolates, P. swingsii induced the highest mortality. Additionally, results from quantitative polymerase chain reaction analysis, focusing on known virulence genes were detected in all isolates grown under laboratory conditions. Photobacterium rosenbergii and P. swingsii showed the highest expression levels of these virulence determinants. These results indicate that Photobacterium spp. could be a significant pathogen of P. canaliculus, with possible importance during summer mortality events. By implementing screening methods to detect and monitor Photobacterium concentrations in farmed mussel populations, a better understanding of the host-pathogen relationship can be obtained, aiding the development of a resilient industry in a changing environment.


Assuntos
Perna (Organismo) , Vibrio , Animais , Perna (Organismo)/metabolismo , Vibrio/genética , Estações do Ano , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Alimentos Marinhos
8.
Mol Cell ; 72(6): 970-984.e7, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30449723

RESUMO

Extensive tracts of the mammalian genome that lack protein-coding function are still transcribed into long noncoding RNA. While these lncRNAs are generally short lived, length restricted, and non-polyadenylated, how their expression is distinguished from protein-coding genes remains enigmatic. Surprisingly, depletion of the ubiquitous Pol-II-associated transcription elongation factor SPT6 promotes a redistribution of H3K36me3 histone marks from active protein coding to lncRNA genes, which correlates with increased lncRNA transcription. SPT6 knockdown also impairs the recruitment of the Integrator complex to chromatin, which results in a transcriptional termination defect for lncRNA genes. This leads to the formation of extended, polyadenylated lncRNAs that are both chromatin restricted and form increased levels of RNA:DNA hybrid (R-loops) that are associated with DNA damage. Additionally, these deregulated lncRNAs overlap with DNA replication origins leading to localized DNA replication stress and a cellular senescence phenotype. Overall, our results underline the importance of restricting lncRNA expression.


Assuntos
Proliferação de Células , Senescência Celular , Dano ao DNA , Replicação do DNA , DNA de Neoplasias/biossíntese , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Uterinas/metabolismo , Animais , Montagem e Desmontagem da Cromatina , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , DNA de Neoplasias/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Histonas/metabolismo , Humanos , Metilação , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Estabilidade de RNA , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , Fatores de Transcrição/genética , Transcrição Gênica , Neoplasias Uterinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...